Reconstructing the Dynamic Directivity of Unconstrained Speech
An accurate model of natural speech directivity is an important step toward achieving realistic vocal presence within a virtual communication setting. In this article, we propose a method to estimate and reconstruct the spatial energy distribution pattern of natural, unconstrained speech. We detail our method in two stages. Using recordings of speech captured by a real, static microphone array, we create a virtual array that tracks with the movement of the speaker over time. We use this egocentric virtual array to measure and encode the high-resolution directivity pattern of the speech signal as it dynamically evolves with natural speech and movement. Utilizing this encoded directivity representation, we train a machine learning model that leverages to estimate the full, dynamic directivity pattern when given a limited set of speech signals, as would be the case when speech is recorded using the microphones on a head-mounted display (HMD). We examine a variety of model architectures and training paradigms, and discuss the utility and practicality of each implementation. Our results demonstrate that neural networks can be used to regress from limited speech information to an accurate, dynamic estimation of the full directivity pattern.
READ FULL TEXT