Reconstruction in the Labeled Stochastic Block Model
The labeled stochastic block model is a random graph model representing networks with community structure and interactions of multiple types. In its simplest form, it consists of two communities of approximately equal size, and the edges are drawn and labeled at random with probability depending on whether their two endpoints belong to the same community or not. It has been conjectured in Heimlicher12 that correlated reconstruction (i.e. identification of a partition correlated with the true partition into the underlying communities) would be feasible if and only if a model parameter exceeds a threshold. We prove one half of this conjecture, i.e., reconstruction is impossible when below the threshold. In the positive direction, we introduce a weighted graph to exploit the label information. With a suitable choice of weight function, we show that when above the threshold by a specific constant, reconstruction is achieved by (1) minimum bisection, (2) a semidefinite relaxation of minimum bisection, and (3) a spectral method combined with removal of edges incident to vertices of high degree. Furthermore, we show that hypothesis testing between the labeled stochastic block model and the labeled Erdős-Rényi random graph model exhibits a phase transition at the conjectured reconstruction threshold.
READ FULL TEXT