Recovering Private Text in Federated Learning of Language Models

05/17/2022
by   Samyak Gupta, et al.
6

Federated learning allows distributed users to collaboratively train a model while keeping each user's data private. Recently, a growing body of work has demonstrated that an eavesdropping attacker can effectively recover image data from gradients transmitted during federated learning. However, little progress has been made in recovering text data. In this paper, we present a novel attack method FILM for federated learning of language models – for the first time, we show the feasibility of recovering text from large batch sizes of up to 128 sentences. Different from image-recovery methods which are optimized to match gradients, we take a distinct approach that first identifies a set of words from gradients and then directly reconstructs sentences based on beam search and a prior-based reordering strategy. The key insight of our attack is to leverage either prior knowledge in pre-trained language models or memorization during training. Despite its simplicity, we demonstrate that FILM can work well with several large-scale datasets – it can extract single sentences with high fidelity even for large batch sizes and recover multiple sentences from the batch successfully if the attack is applied iteratively. We hope our results can motivate future work in developing stronger attacks as well as new defense methods for training language models in federated learning. Our code is publicly available at https://github.com/Princeton-SysML/FILM.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset