Recovering Quantized Data with Missing Information Using Bilinear Factorization and Augmented Lagrangian Method

10/07/2018
by   Ashkan Esmaeili, et al.
0

In this paper, we propose a novel approach in order to recover a quantized matrix with missing information. We propose a regularized convex cost function composed of a log-likelihood term and a Trace norm term. The Bi-factorization approach and the Augmented Lagrangian Method (ALM) are applied to find the global minimizer of the cost function in order to recover the genuine data. We provide mathematical convergence analysis for our proposed algorithm. In the Numerical Experiments Section, we show the superiority of our method in accuracy and also its robustness in computational complexity compared to the state-of-the-art literature methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset