Recurrent-type Neural Networks for Real-time Short-term Prediction of Ship Motions in High Sea State
The prediction capability of recurrent-type neural networks is investigated for real-time short-term prediction (nowcasting) of ship motions in high sea state. Specifically, the performance of recurrent neural networks, long-short term memory, and gated recurrent units models are assessed and compared using a data set coming from computational fluid dynamics simulations of a self-propelled destroyer-type vessel in stern-quartering sea state 7. Time series of incident wave, ship motions, rudder angle, as well as immersion probes, are used as variables for a nowcasting problem. The objective is to obtain about 20 s ahead prediction. Overall, the three methods provide promising and comparable results.
READ FULL TEXT