Region-Wise Attack: On Efficient Generation of Robust Physical Adversarial Examples

12/05/2019
by   Bo Luo, et al.
0

Deep neural networks (DNNs) are shown to be susceptible to adversarial example attacks. Most existing works achieve this malicious objective by crafting subtle pixel-wise perturbations, and they are difficult to launch in the physical world due to inevitable transformations (e.g., different photographic distances and angles). Recently, there are a few research works on generating physical adversarial examples, but they generally require the details of the model a priori, which is often impractical. In this work, we propose a novel physical adversarial attack for arbitrary black-box DNN models, namely Region-Wise Attack. To be specific, we present how to efficiently search for region-wise perturbations to the inputs and determine their shapes, locations and colors via both top-down and bottom-up techniques. In addition, we introduce two fine-tuning techniques to further improve the robustness of our attack. Experimental results demonstrate the efficacy and robustness of the proposed Region-Wise Attack in real world.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset