Regulating Accuracy-Efficiency Trade-Offs in Distributed Machine Learning Systems

07/04/2020
by   A. Feder Cooper, et al.
0

In this paper we discuss the trade-off between accuracy and efficiency in distributed machine learning (ML) systems and analyze its resulting policy considerations. This trade-off is in fact quite common in multiple disciplines, including law and medicine, and it applies to a wide variety of subfields within computer science. Accuracy and efficiency trade-offs have unique implications in ML algorithms because, being probabilistic in nature, such algorithms generally exhibit error tolerance. After describing how the trade-off takes shape in real-world distributed computing systems, we show the interplay between such systems and ML algorithms, explaining in detail how accuracy and efficiency interact particularly in distributed ML systems. We close by making specific calls to action for approaching regulatory policy for the emerging technology of real-time distributed ML systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset