Reinforcement Mechanism Design, with Applications to Dynamic Pricing in Sponsored Search Auctions
In this study, we apply reinforcement learning techniques and propose what we call reinforcement mechanism design to tackle the dynamic pricing problem in sponsored search auctions. In contrast to previous game-theoretical approaches that heavily rely on rationality and common knowledge among the bidders, we take a data-driven approach, and try to learn, over repeated interactions, the set of optimal reserve prices. We implement our approach within the current sponsored search framework of a major search engine: we first train a buyer behavior model, via a real bidding data set, that accurately predicts bids given information that bidders are aware of, including the game parameters disclosed by the search engine, as well as the bidders' KPI data from previous rounds. We then put forward a reinforcement/MDP (Markov Decision Process) based algorithm that optimizes reserve prices over time, in a GSP-like auction. Our simulations demonstrate that our framework outperforms static optimization strategies including the ones that are currently in use, as well as several other dynamic ones.
READ FULL TEXT