Relative Entropy-Based Waveform Optimization for Rician Target Detection with Dual-Function Radar Communication Systems
In this paper, we consider waveform design for dualfunction radar-communication systems based on multiple-inputmultiple-out arrays. To achieve better Rician target detection performance, we use the relative entropy associated with the formulated detection problem as the design metric. We also impose a multiuser interference energy constraint on the waveforms to ensure the achievable sum-rate of the communications. Two algorithms are presented to tackle the nonlinear non-convex waveform design problem. In the first algorithm, we derive a quadratic function to minorize the objective function. To tackle the quadratically constrained quadratic programming problem at each iteration, a semidefinite relaxation approach followed by a rank-one decomposition procedure and an efficient alternating direction method of multipliers (ADMM) are proposed, respectively. In the second algorithm, we present a novel ADMM algorithm to tackle the optimization problem and employ an efficient minorization-maximization approach in the inner loop of the ADMM algorithm. Numerical results demonstrate the superiority of both algorithms. Moreover, the presented algorithms can be extended to synthesize peak-to-average-power ratio constrained waveforms, which allows the radio frequency amplifier to operate at an increased efficiency.
READ FULL TEXT