Relevant CommonSense Subgraphs for "What if..." Procedural Reasoning

03/21/2022
by   Chen Zheng, et al.
0

We study the challenge of learning causal reasoning over procedural text to answer "What if..." questions when external commonsense knowledge is required. We propose a novel multi-hop graph reasoning model to 1) efficiently extract a commonsense subgraph with the most relevant information from a large knowledge graph; 2) predict the causal answer by reasoning over the representations obtained from the commonsense subgraph and the contextual interactions between the questions and context. We evaluate our model on WIQA benchmark and achieve state-of-the-art performance compared to the recent models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset