Reliability of Broadcast Communications Under Sparse Random Linear Network Coding

05/26/2017
by   Suzie Brown, et al.
0

Ultra-reliable Point-to-Multipoint (PtM) communications are expected to become pivotal in networks offering future dependable services for smart cities. In this regard, sparse Random Linear Network Coding (RLNC) techniques have been widely employed to provide an efficient way to improve the reliability of broadcast and multicast data streams. This paper addresses the pressing concern of providing a tight approximation to the probability of a user recovering a data stream protected by this kind of coding technique. In particular, by exploiting the Stein-Chen method, we provide a novel and general performance framework applicable to any combination of system and service parameters, such as finite field sizes, lengths of the data stream and level of sparsity. The deviation of the proposed approximation from Monte Carlo simulations is negligible, improving significantly on the state of the art performance bounds.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset