Remote Bio-Sensing: Open Source Benchmark Framework for Fair Evaluation of rPPG
Remote Photoplethysmography (rPPG) is a technology that utilizes the light absorption properties of hemoglobin, captured via camera, to analyze and measure blood volume pulse (BVP). By analyzing the measured BVP, various physiological signals such as heart rate, stress levels, and blood pressure can be derived, enabling applications such as the early prediction of cardiovascular diseases. rPPG is a rapidly evolving field as it allows the measurement of vital signals using camera-equipped devices without the need for additional devices such as blood pressure monitors or pulse oximeters, and without the assistance of medical experts. Despite extensive efforts and advances in this field, serious challenges remain, including issues related to skin color, camera characteristics, ambient lighting, and other sources of noise, which degrade performance accuracy. We argue that fair and evaluable benchmarking is urgently required to overcome these challenges and make any meaningful progress from both academic and commercial perspectives. In most existing work, models are trained, tested, and validated only on limited datasets. Worse still, some studies lack available code or reproducibility, making it difficult to fairly evaluate and compare performance. Therefore, the purpose of this study is to provide a benchmarking framework to evaluate various rPPG techniques across a wide range of datasets for fair evaluation and comparison, including both conventional non-deep neural network (non-DNN) and deep neural network (DNN) methods. GitHub URL: https://github.com/remotebiosensing/rppg.
READ FULL TEXT