Remote Monitoring of Two-State Markov Sources via Random Access Channels: an Information Freshness vs. State Estimation Entropy Perspective

03/08/2023
by   Giuseppe Cocco, et al.
0

We study a system in which two-state Markov sources send status updates to a common receiver over a slotted ALOHA random access channel. We characterize the performance of the system in terms of state estimation entropy (SEE), which measures the uncertainty at the receiver about the sources' state. Two channel access strategies are considered, a reactive policy that depends on the source behavior and a random one that is independent of it. We prove that the considered policies can be studied using two different hidden Markov models (HMM) and show through density evolution (DE) analysis that the reactive strategy outperforms the random one in terms of SEE while the opposite is true for AoI. Furthermore, we characterize the probability of error in the state estimation at the receiver, considering a maximum a posteriori (MAP) estimator and a low-complexity (decode and hold) estimator. Our study provides useful insights on the design trade-offs that emerge when different performance metrics such as SEE, age or information (AoI) or state estimation error probability are adopted. Moreover, we show how the source statistics significantly impact the system performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset