Representation of binary classification trees with binary features by quantum circuits

08/30/2021
by   Raoul Heese, et al.
0

We propose a quantum representation of binary classification trees with binary features based on a probabilistic approach. By using the quantum computer as a processor for probability distributions, a probabilistic traversal of the decision tree can be realized via measurements of a quantum circuit. We describe how tree inductions and the prediction of class labels of query data can be integrated into this framework. An on-demand sampling method enables predictions with a constant number of classical memory slots, independent of the tree depth. We experimentally study our approach using both a quantum computing simulator and actual IBM quantum hardware. To our knowledge, this is the first realization of a decision tree classifier on a quantum device.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset