Representing the Special Linear Group with Block Unitriangular Matrices

04/30/2023
by   John Urschel, et al.
0

We prove that every element of the special linear group can be represented as the product of at most six block unitriangular matrices, and that there exist matrices for which six products are necessary, independent of indexing. We present an analogous result for the general linear group. These results serve as general statements regarding the representational power of alternating linear updates. The factorizations and lower bounds of this work immediately imply tight estimates on the expressive power of linear affine coupling blocks in machine learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset