Resampling-based confidence intervals and bands for the average treatment effect in observational studies with competing risks

06/06/2023
by   Jasmin Rühl, et al.
0

The g-formula can be used to estimate the treatment effect while accounting for confounding bias in observational studies. With regard to time-to-event endpoints, possibly subject to competing risks, the construction of valid pointwise confidence intervals and time-simultaneous confidence bands for the causal risk difference is complicated, however. A convenient solution is to approximate the asymptotic distribution of the corresponding stochastic process by means of resampling approaches. In this paper, we consider three different resampling methods, namely the classical nonparametric bootstrap, the influence function equipped with a resampling approach as well as a martingale-based bootstrap version. We set up a simulation study to compare the accuracy of the different techniques, which reveals that the wild bootstrap should in general be preferred if the sample size is moderate and sufficient data on the event of interest have been accrued. For illustration, the three resampling methods are applied to data on the long-term survival in patients with early-stage Hodgkin's disease.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset