Resolvability of Hamming Graphs

07/12/2019
by   Lucas Laird, et al.
0

A subset of vertices in a graph is called resolving when the geodesic distances to those vertices uniquely distinguish every vertex in the graph. Here, we characterize the resolvability of Hamming graphs in terms of a constrained linear system and deduce a novel but straightforward characterization of resolvability for hypercubes. We propose an integer linear programming method to assess resolvability rapidly, and provide a more costly but definite method based on Gröbner bases to determine whether or not a set of vertices resolves an arbitrary Hamming graph. As proof of concept, we identify a resolving set of size 77 in the metric space of all octapeptides (i.e., proteins composed of eight amino acids) with respect to the Hamming distance; in particular, any octamer may be readily represented as a 77-dimensional real-vector. Representing k-mers as low-dimensional numerical vectors may enable new applications of machine learning algorithms to symbolic sequences.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset