Resource Allocation for Cooperative D2D-Enabled Wireless Caching Networks

08/21/2018
by   Jiaqi Liu, et al.
0

In this paper, we study the resource allocation problem for a cooperative device-to-device (D2D)-enabled wireless caching network, where each user randomly caches popular contents to its memory and shares the contents with nearby users through D2D links. To enhance the throughput of spectrum sharing D2D links, which may be severely limited by the interference among D2D links, we enable the cooperation among some of the D2D links to eliminate the interference among them. We formulate a joint link scheduling and power allocation problem to maximize the overall throughput of cooperative D2D links (CDLs) and non-cooperative D2D links (NDLs), which is NP-hard. To solve the problem, we decompose it into two subproblems that maximize the sum rates of the CDLs and the NDLs, respectively. For CDL optimization, we propose a semi-orthogonal-based algorithm for joint user scheduling and power allocation. For NDL optimization, we propose a novel low-complexity algorithm to perform link scheduling and develop a Difference of Convex functions (D.C.) programming method to solve the non-convex power allocation problem. Simulation results show that the cooperative transmission can significantly increase both the number of served users and the overall system throughput.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset