RestGPT: Connecting Large Language Models with Real-World Applications via RESTful APIs
Tool-augmented large language models (LLMs) have achieved remarkable progress in tackling a broad range of queries. However, existing work are still in the experimental stage and has limitations in extensibility and robustness, especially facing the real-world applications. In this paper, we consider a more realistic scenario, connecting LLMs with RESTful APIs, which use the commonly adopted REST software architectural style for web service development. To address the practical challenges of planning and API usage, we introduce RestGPT, which leverages LLMs to solve user requests by connecting with RESTful APIs. Specifically, we propose a coarse-to-fine online planning mechanism to enhance the ability of planning and API selection. For the complex scenario of calling RESTful APIs, we also specially designed an API executor to formulate parameters and parse API responses. Experiments show that RestGPT is able to achieve impressive results in complex tasks and has strong robustness, which paves a new way towards AGI.
READ FULL TEXT