Rethinking Similarity Search: Embracing Smarter Mechanisms over Smarter Data
In this vision paper, we propose a shift in perspective for improving the effectiveness of similarity search. Rather than focusing solely on enhancing the data quality, particularly machine learning-generated embeddings, we advocate for a more comprehensive approach that also enhances the underpinning search mechanisms. We highlight three novel avenues that call for a redefinition of the similarity search problem: exploiting implicit data structures and distributions, engaging users in an iterative feedback loop, and moving beyond a single query vector. These novel pathways have gained relevance in emerging applications such as large-scale language models, video clip retrieval, and data labeling. We discuss the corresponding research challenges posed by these new problem areas and share insights from our preliminary discoveries.
READ FULL TEXT