Reversible Computation in Term Rewriting
Essentially, in a reversible programming language, for each forward computation from state S to state S', there exists a constructive method to go backwards from state S' to state S. Besides its theoretical interest, reversible computation is a fundamental concept which is relevant in many different areas like cellular automata, bidirectional program transformation, or quantum computing, to name a few. In this work, we focus on term rewriting, a computation model that underlies most rule-based programming languages. In general, term rewriting is not reversible, even for injective functions; namely, given a rewrite step t_1 → t_2, we do not always have a decidable method to get t_1 from t_2. Here, we introduce a conservative extension of term rewriting that becomes reversible. Furthermore, we also define two transformations, injectivization and inversion, to make a rewrite system reversible using standard term rewriting. We illustrate the usefulness of our transformations in the context of bidirectional program transformation.
READ FULL TEXT