Riemannian stochastic variance reduced gradient

02/18/2017
by   Hiroyuki Sato, et al.
0

Stochastic variance reduction algorithms have recently become popular for minimizing the average of a large but finite number of loss functions. In this paper, we propose a novel Riemannian extension of the Euclidean stochastic variance reduced gradient algorithm (R-SVRG) to a manifold search space. The key challenges of averaging, adding, and subtracting multiple gradients are addressed with retraction and vector transport. We present a global convergence analysis of the proposed algorithm with a decay step size and a local convergence rate analysis under a fixed step size under some natural assumptions. The proposed algorithm is applied to problems on the Grassmann manifold, such as principal component analysis, low-rank matrix completion, and computation of the Karcher mean of subspaces, and outperforms the standard Riemannian stochastic gradient descent algorithm in each case.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset