Riemannian Tensor Completion with Side Information

11/12/2016
by   Tengfei Zhou, et al.
0

By restricting the iterate on a nonlinear manifold, the recently proposed Riemannian optimization methods prove to be both efficient and effective in low rank tensor completion problems. However, existing methods fail to exploit the easily accessible side information, due to their format mismatch. Consequently, there is still room for improvement in such methods. To fill the gap, in this paper, a novel Riemannian model is proposed to organically integrate the original model and the side information by overcoming their inconsistency. For this particular model, an efficient Riemannian conjugate gradient descent solver is devised based on a new metric that captures the curvature of the objective.Numerical experiments suggest that our solver is more accurate than the state-of-the-art without compromising the efficiency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset