Road traffic reservoir computing
Reservoir computing derived from recurrent neural networks is more applicable to real world systems than deep learning because of its low computational cost and potential for physical implementation. Specifically, physical reservoir computing, which replaces the dynamics of reservoir units with physical phenomena, has recently received considerable attention. In this study, we propose a method of exploiting the dynamics of road traffic as a reservoir, and numerically confirm its feasibility by applying several prediction tasks based on a simple mathematical model of the traffic flow.
READ FULL TEXT