Robust change point tests by bounded transformations

05/15/2019
by   Alexander Dürre, et al.
0

Classical moment based change point tests like the cusum test are very powerful in case of Gaussian time series with one change point but behave poorly under heavy tailed distributions and corrupted data. A new class of robust change point tests based on cusum statistics of robustly transformed observations is proposed. This framework is quite flexible, depending on the used transformation one can detect for instance changes in the mean, scale or dependence of a possibly multivariate time series. Simulations indicate that this approach is very powerful in detecting changes in the marginal variance of ARCH processes and outperforms existing proposals for detecting structural breaks in the dependence structure of heavy tailed multivariate time series.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset