Robust estimators in a generalized partly linear regression model under monotony constraints

02/22/2018
by   Graciela Boente, et al.
0

In this paper, we consider the situation in which the observations follow an isotonic generalized partly linear model. Under this model, the mean of the responses is modelled, through a link function, linearly on some covariates and nonparametrically on an univariate regressor in such a way that the nonparametric component is assumed to be a monotone function. A class of robust estimates for the monotone nonparametric component and for the regression parameter, related to the linear one, is defined. The robust estimators are based on a spline approach combined with a score function which bounds large values of the deviance. As an application, we consider the isotonic partly linear log--Gamma regression model. Through a Monte Carlo study, we investigate the performance of the proposed estimators under a partly linear log--Gamma regression model with increasing nonparametric component.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset