Robust Hyperspectral Image Fusion with Simultaneous Guide Image Denoising via Constrained Convex Optimization

09/24/2022
by   Saori Takeyama, et al.
0

The paper proposes a new high spatial resolution hyperspectral (HR-HS) image estimation method based on convex optimization. The method assumes a low spatial resolution HS (LR-HS) image and a guide image as observations, where both observations are contaminated by noise. Our method simultaneously estimates an HR-HS image and a noiseless guide image, so the method can utilize spatial information in a guide image even if it is contaminated by heavy noise. The proposed estimation problem adopts hybrid spatio-spectral total variation as regularization and evaluates the edge similarity between HR-HS and guide images to effectively use apriori knowledge on an HR-HS image and spatial detail information in a guide image. To efficiently solve the problem, we apply a primal-dual splitting method. Experiments demonstrate the performance of our method and the advantage over several existing methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset