RoMA: a Method for Neural Network Robustness Measurement and Assessment
Neural network models have become the leading solution for a large variety of tasks, such as classification, language processing, protein folding, and others. However, their reliability is heavily plagued by adversarial inputs: small input perturbations that cause the model to produce erroneous outputs. Adversarial inputs can occur naturally when the system's environment behaves randomly, even in the absence of a malicious adversary, and are a severe cause for concern when attempting to deploy neural networks within critical systems. In this paper, we present a new statistical method, called Robustness Measurement and Assessment (RoMA), which can measure the expected robustness of a neural network model. Specifically, RoMA determines the probability that a random input perturbation might cause misclassification. The method allows us to provide formal guarantees regarding the expected frequency of errors that a trained model will encounter after deployment. Our approach can be applied to large-scale, black-box neural networks, which is a significant advantage compared to recently proposed verification methods. We apply our approach in two ways: comparing the robustness of different models, and measuring how a model's robustness is affected by the magnitude of input perturbation. One interesting insight obtained through this work is that, in a classification network, different output labels can exhibit very different robustness levels. We term this phenomenon categorial robustness. Our ability to perform risk and robustness assessments on a categorial basis opens the door to risk mitigation, which may prove to be a significant step towards neural network certification in safety-critical applications.
READ FULL TEXT