Root Cause Detection Among Anomalous Time Series Using Temporal State Alignment

01/04/2020
by   Sayan Chakraborty, et al.
0

The recent increase in the scale and complexity of software systems has introduced new challenges to the time series monitoring and anomaly detection process. A major drawback of existing anomaly detection methods is that they lack contextual information to help stakeholders identify the cause of anomalies. This problem, known as root cause detection, is particularly challenging to undertake in today's complex distributed software systems since the metrics under consideration generally have multiple internal and external dependencies. Significant manual analysis and strong domain expertise is required to isolate the correct cause of the problem. In this paper, we propose a method that isolates the root cause of an anomaly by analyzing the patterns in time series fluctuations. Our method considers the time series as observations from an underlying process passing through a sequence of discretized hidden states. The idea is to track the propagation of the effect when a given problem causes unaligned but homogeneous shifts of the underlying states. We evaluate our approach by finding the root cause of anomalies in Zillows clickstream data by identifying causal patterns among a set of observed fluctuations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset