RoQNN: Noise-Aware Training for Robust Quantum Neural Networks
Quantum Neural Network (QNN) is a promising application towards quantum advantage on near-term quantum hardware. However, due to the large quantum noises (errors), the performance of QNN models has a severe degradation on real quantum devices. For example, the accuracy gap between noise-free simulation and noisy results on IBMQ-Yorktown for MNIST-4 classification is over 60 Existing noise mitigation methods are general ones without leveraging unique characteristics of QNN and are only applicable to inference; on the other hand, existing QNN work does not consider noise effect. To this end, we present RoQNN, a QNN-specific framework to perform noise-aware optimizations in both training and inference stages to improve robustness. We analytically deduct and experimentally observe that the effect of quantum noise to QNN measurement outcome is a linear map from noise-free outcome with a scaling and a shift factor. Motivated by that, we propose post-measurement normalization to mitigate the feature distribution differences between noise-free and noisy scenarios. Furthermore, to improve the robustness against noise, we propose noise injection to the training process by inserting quantum error gates to QNN according to realistic noise models of quantum hardware. Finally, post-measurement quantization is introduced to quantize the measurement outcomes to discrete values, achieving the denoising effect. Extensive experiments on 8 classification tasks using 6 quantum devices demonstrate that RoQNN improves accuracy by up to 43 4-class, and 34 quantum computers. We also open-source our PyTorch library for construction and noise-aware training of QNN at https://github.com/mit-han-lab/pytorch-quantum .
READ FULL TEXT