Route Planning with Real-Time Traffic Predictions
Situation aware route planning gathers increasing interest as cities become crowded and jammed. We present a system for individual trip planning that incorporates future traffic hazards in routing. Future traffic conditions are computed by a Spatio-Temporal Random Field based on a stream of sensor readings. In addition, our approach estimates traffic flow in areas with low sensor coverage using a Gaussian Process Regression. The conditioning of spatial regression on intermediate predictions of a discrete probabilistic graphical model allows us to incorporate historical data, streamed online data and a rich dependency structure at the same time. We demonstrate the system with a real-world use-case from Dublin city, Ireland.
READ FULL TEXT