Runtime Analysis of Quality Diversity Algorithms

05/30/2023
by   Jakob Bossek, et al.
0

Quality diversity (QD) is a branch of evolutionary computation that gained increasing interest in recent years. The Map-Elites QD approach defines a feature space, i.e., a partition of the search space, and stores the best solution for each cell of this space. We study a simple QD algorithm in the context of pseudo-Boolean optimisation on the “number of ones” feature space, where the ith cell stores the best solution amongst those with a number of ones in [(i-1)k, ik-1]. Here k is a granularity parameter 1 ≤ k ≤ n+1. We give a tight bound on the expected time until all cells are covered for arbitrary fitness functions and for all k and analyse the expected optimisation time of QD on OneMax and other problems whose structure aligns favourably with the feature space. On combinatorial problems we show that QD finds a (1-1/e)-approximation when maximising any monotone sub-modular function with a single uniform cardinality constraint efficiently. Defining the feature space as the number of connected components of a connected graph, we show that QD finds a minimum spanning tree in expected polynomial time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset