S^2-MLP: Spatial-Shift MLP Architecture for Vision

06/14/2021
by   Tan Yu, et al.
3

Recently, visual Transformer (ViT) and its following works abandon the convolution and exploit the self-attention operation, attaining a comparable or even higher accuracy than CNN. More recently, MLP-Mixer abandons both the convolution and the self-attention operation, proposing an architecture containing only MLP layers. To achieve cross-patch communications, it devises an additional token-mixing MLP besides the channel-mixing MLP. It achieves promising results when training on an extremely large-scale dataset. But it cannot achieve as outstanding performance as its CNN and ViT counterparts when training on medium-scale datasets such as ImageNet1K and ImageNet21K. The performance drop of MLP-Mixer motivates us to rethink the token-mixing MLP. We discover that token-mixing operation in MLP-Mixer is a variant of depthwise convolution with a global reception field and spatial-specific configuration. But the global reception field and the spatial-specific property make token-mixing MLP prone to over-fitting. In this paper, we propose a novel pure MLP architecture, spatial-shift MLP (S^2-MLP). Different from MLP-Mixer, our S^2-MLP only contains channel-mixing MLP. We devise a spatial-shift operation for achieving the communication between patches. It has a local reception field and is spatial-agnostic. Meanwhile, it is parameter-free and efficient for computation. The proposed S^2-MLP attains higher recognition accuracy than MLP-Mixer when training on ImageNet-1K dataset. Meanwhile, S^2-MLP accomplishes as excellent performance as ViT on ImageNet-1K dataset with considerably simpler architecture and fewer FLOPs and parameters.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro