S-Shaped vs. V-Shaped Transfer Functions for Antlion Optimization Algorithm in Feature Selection Problems

12/06/2017
by   Majdi Mafarja, et al.
0

Feature selection is an important preprocessing step for classification problems. It deals with selecting near optimal features in the original dataset. Feature selection is an NP-hard problem, so meta-heuristics can be more efficient than exact methods. In this work, Ant Lion Optimizer (ALO), which is a recent metaheuristic algorithm, is employed as a wrapper feature selection method. Six variants of ALO are proposed where each employ a transfer function to map a continuous search space to a discrete search space. The performance of the proposed approaches is tested on eighteen UCI datasets and compared to a number of existing approaches in the literature: Particle Swarm Optimization, Gravitational Search Algorithm, and two existing ALO-based approaches. Computational experiments show that the proposed approaches efficiently explore the feature space and select the most informative features, which help to improve the classification accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset