Safely Entering the Deep: A Review of Verification and Validation for Machine Learning and a Challenge Elicitation in the Automotive Industry

12/13/2018
by   Markus Borg, et al.
0

Deep Neural Networks (DNN) will emerge as a cornerstone in automotive software engineering. However, developing systems with DNNs introduces novel challenges for safety assessments. This paper reviews the state-of-the-art in verification and validation of safety-critical systems that rely on machine learning. Furthermore, we report from a workshop series on DNNs for perception with automotive experts in Sweden, confirming that ISO 26262 largely contravenes the nature of DNNs. We recommend aerospace-to-automotive knowledge transfer and systems-based safety approaches, e.g., safety cage architectures and simulated system test cases.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro