SALSA: Self-Adjusting Lean Streaming Analytics

02/24/2021
by   Ran Ben Basat, et al.
0

Counters are the fundamental building block of many data sketching schemes, which hash items to a small number of counters and account for collisions to provide good approximations for frequencies and other measures. Most existing methods rely on fixed-size counters, which may be wasteful in terms of space, as counters must be large enough to eliminate any risk of overflow. Instead, some solutions use small, fixed-size counters that may overflow into secondary structures. This paper takes a different approach. We propose a simple and general method called SALSA for dynamic re-sizing of counters and show its effectiveness. SALSA starts with small counters, and overflowing counters simply merge with their neighbors. SALSA can thereby allow more counters for a given space, expanding them as necessary to represent large numbers. Our evaluation demonstrates that, at the cost of a small overhead for its merging logic, SALSA significantly improves the accuracy of popular schemes (such as Count-Min Sketch and Count Sketch) over a variety of tasks. Our code is released as open-source [1].

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset