Salt and pepper noise removal method based on stationary Framelet transform with non-convex sparsity regularization

10/18/2021
by   Yingpin Chen, et al.
0

Salt and pepper noise removal is a common inverse problem in image processing, and it aims to restore image information with high quality. Traditional salt and pepper denoising methods have two limitations. First, noise characteristics are often not described accurately. For example, the noise location information is often ignored and the sparsity of the salt and pepper noise is often described by L1 norm, which cannot illustrate the sparse variables clearly. Second, conventional methods separate the contaminated image into a recovered image and a noise part, thus resulting in recovering an image with unsatisfied smooth parts and detail parts. In this study, we introduce a noise detection strategy to determine the position of the noise, and a non-convex sparsity regularization depicted by Lp quasi-norm is employed to describe the sparsity of the noise, thereby addressing the first limitation. The morphological component analysis framework with stationary Framelet transform is adopted to decompose the processed image into cartoon, texture, and noise parts to resolve the second limitation. In this framework, the stationary Framelet regularizations with different parameters control the restoration of the cartoon and texture parts. In this way, the two parts are recovered separately to avoid mutual interference. Then, the alternating direction method of multipliers (ADMM) is employed to solve the proposed model. Finally, experiments are conducted to verify the proposed method and compare it with some current state-of-the-art denoising methods. The experimental results show that the proposed method can remove salt and pepper noise while preserving the details of the processed image.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset