Scaling up Probabilistic Inference in Linear and Non-Linear Hybrid Domains by Leveraging Knowledge Compilation

11/29/2018
by   Anton Fuxjaeger, et al.
0

Weighted model integration (WMI) extends weighted model counting (WMC) in providing a computational abstraction for probabilistic inference in mixed discrete-continuous domains. WMC has emerged as an assembly language for state-of-the-art reasoning in Bayesian networks, factor graphs, probabilistic programs and probabilistic databases. In this regard, WMI shows immense promise to be much more widely applicable, especially as many real-world applications involve attribute and feature spaces that are continuous and mixed. Nonetheless, state-of-the-art tools for WMI are limited and less mature than their propositional counterparts. In this work, we propose a new implementation regime that leverages propositional knowledge compilation for scaling up inference. In particular, we use sentential decision diagrams, a tractable representation of Boolean functions, as the underlying model counting and model enumeration scheme. Our regime performs competitively to state-of-the-art WMI systems, but is also shown, for the first time, to handle non-linear constraints over non-linear potentials.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset