Scaling Up, Scaling Deep: Blockwise Graph Contrastive Learning

06/03/2023
by   Jintang Li, et al.
0

Oversmoothing is a common phenomenon in graph neural networks (GNNs), in which an increase in the network depth leads to a deterioration in their performance. Graph contrastive learning (GCL) is emerging as a promising way of leveraging vast unlabeled graph data. As a marriage between GNNs and contrastive learning, it remains unclear whether GCL inherits the same oversmoothing defect from GNNs. This work undertakes a fundamental analysis of GCL from the perspective of oversmoothing on the first hand. We demonstrate empirically that increasing network depth in GCL also leads to oversmoothing in their deep representations, and surprisingly, the shallow ones. We refer to this phenomenon in GCL as long-range starvation', wherein lower layers in deep networks suffer from degradation due to the lack of sufficient guidance from supervision (e.g., loss computing). Based on our findings, we present BlockGCL, a remarkably simple yet effective blockwise training framework to prevent GCL from notorious oversmoothing. Without bells and whistles, BlockGCL consistently improves robustness and stability for well-established GCL methods with increasing numbers of layers on real-world graph benchmarks. We believe our work will provide insights for future improvements of scalable and deep GCL frameworks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset