Secure Network Function Computation for Linear Functions – Part I: Source Security
In this paper, we put forward secure network function computation over a directed acyclic network. In such a network, a sink node is required to compute with zero error a target function of which the inputs are generated as source messages at multiple source nodes, while a wiretapper, who can access any one but not more than one wiretap set in a given collection of wiretap sets, is not allowed to obtain any information about a security function of the source messages. The secure computing capacity for the above model is defined as the maximum average number of times that the target function can be securely computed with zero error at the sink node with the given collection of wiretap sets and security function for one use of the network. The characterization of this capacity is in general overwhelmingly difficult. In the current paper, we consider securely computing linear functions with a wiretapper who can eavesdrop any subset of edges up to a certain size r, referred to as the security level, with the security function being the identity function. We first prove an upper bound on the secure computing capacity, which is applicable to arbitrary network topologies and arbitrary security levels. When the security level r is equal to 0, our upper bound reduces to the computing capacity without security consideration. We discover the surprising fact that for some models, there is no penalty on the secure computing capacity compared with the computing capacity without security consideration. We further obtain an equivalent expression of the upper bound by using a graph-theoretic approach, and accordingly we develop an efficient approach for computing this bound. Furthermore, we present a construction of linear function-computing secure network codes and obtain a lower bound on the secure computing capacity.
READ FULL TEXT