Segmentation-Based Bounding Box Generation for Omnidirectional Pedestrian Detection
We propose a segmentation-based bounding box generation method for omnidirectional pedestrian detection, which enables detectors to tightly fit bounding boxes to pedestrians without omnidirectional images for training. Because the appearance of pedestrians in omnidirectional images may be rotated to any angle, the performance of common pedestrian detectors is likely to be substantially degraded. Existing methods mitigate this issue by transforming images during inference or training detectors with omnidirectional images. However, the first approach substantially degrades the inference speed, and the second approach requires laborious annotations. To overcome these drawbacks, we leverage an existing large-scale dataset, whose segmentation annotations can be utilized, to generate tightly fitted bounding box annotations. We also develop a pseudo-fisheye distortion augmentation method, which further enhances the performance. Extensive analysis shows that our detector successfully fits bounding boxes to pedestrians and demonstrates substantial performance improvement.
READ FULL TEXT