Self-Distilled Masked Auto-Encoders are Efficient Video Anomaly Detectors

06/21/2023
by   Nicolae-Catalin Ristea, et al.
0

We propose an efficient abnormal event detection model based on a lightweight masked auto-encoder (AE) applied at the video frame level. The novelty of the proposed model is threefold. First, we introduce an approach to weight tokens based on motion gradients, thus avoiding learning to reconstruct the static background scene. Second, we integrate a teacher decoder and a student decoder into our architecture, leveraging the discrepancy between the outputs given by the two decoders to improve anomaly detection. Third, we generate synthetic abnormal events to augment the training videos, and task the masked AE model to jointly reconstruct the original frames (without anomalies) and the corresponding pixel-level anomaly maps. Our design leads to an efficient and effective model, as demonstrated by the extensive experiments carried out on three benchmarks: Avenue, ShanghaiTech and UCSD Ped2. The empirical results show that our model achieves an excellent trade-off between speed and accuracy, obtaining competitive AUC scores, while processing 1670 FPS. Hence, our model is between 8 and 70 times faster than competing methods. We also conduct an ablation study to justify our design.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset