Self-Distilled Quantization: Achieving High Compression Rates in Transformer-Based Language Models

07/12/2023
by   James O'Neill, et al.
0

We investigate the effects of post-training quantization and quantization-aware training on the generalization of Transformer language models. We present a new method called self-distilled quantization (SDQ) that minimizes accumulative quantization errors and outperforms baselines. We apply SDQ to multilingual models XLM-R-Base and InfoXLM-Base and demonstrate that both models can be reduced from 32-bit floating point weights to 8-bit integer weights while maintaining a high level of performance on the XGLUE benchmark. Our results also highlight the challenges of quantizing multilingual models, which must generalize to languages they were not fine-tuned on.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset