Self-supervised Deep Reconstruction of Mixed Strip-shredded Text Documents

07/01/2020
by   Thiago M. Paixão, et al.
0

The reconstruction of shredded documents consists of coherently arranging fragments of paper (shreds) to recover the original document(s). A great challenge in computational reconstruction is to properly evaluate the compatibility between the shreds. While traditional pixel-based approaches are not robust to real shredding, more sophisticated solutions compromise significantly time performance. The solution presented in this work extends our previous deep learning method for single-page reconstruction to a more realistic/complex scenario: the reconstruction of several mixed shredded documents at once. In our approach, the compatibility evaluation is modeled as a two-class (valid or invalid) pattern recognition problem. The model is trained in a self-supervised manner on samples extracted from simulated-shredded documents, which obviates manual annotation. Experimental results on three datasets – including a new collection of 100 strip-shredded documents produced for this work – have shown that the proposed method outperforms the competing ones on complex scenarios, achieving accuracy superior to 90

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset