Self-Training Ensemble Networks for Zero-Shot Image Recognition

05/18/2018
by   Meng Ye, et al.
0

Despite the advancement of supervised image recognition algorithms, their de- pendence on the availability of labeled data and the rapid expansion of image categories raise the significant challenge of zero-shot learning. Zero-shot learn- ing (ZSL) aims to transfer knowledge from labeled classes into unlabeled classes to reduce human labeling effort. In this paper, we propose a novel self-training ensemble network model to address zero-shot image recognition. The ensemble network is built by learning multiple image classification functions with a shared feature extraction network but different label embedding representations, each of which facilitates information transfer to different subsets of unlabeled classes. A self-training framework is then deployed to iteratively label the most confident images in each unlabeled class with predicted pseudo-labels and update the ensem- ble network with the training data augmented by the pseudo-labels. The proposed model performs training on both labeled and unlabeled data. It can naturally bridge the domain shift problem in visual appearances and be extended to the generalized zero-shot learning scenario. We conduct experiments on multiple standard ZSL datasets and the empirical results demonstrate the efficacy of the proposed model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset