Semantic Hierarchy Emerges in Deep Generative Representations for Scene Synthesis

11/21/2019
by   Ceyuan Yang, et al.
13

Despite the success of Generative Adversarial Networks (GANs) in image synthesis, there lacks enough understanding on what networks have learned inside the deep generative representations and how photo-realistic images are able to be composed from random noises. In this work, we show that highly-structured semantic hierarchy emerges as variation factors for synthesizing scenes from the generative representations in state-of-the-art GAN models, like StyleGAN and BigGAN. By probing the layer-wise representations with a broad set of semantics at different abstraction levels, we are able to quantify the causality between the activations and semantics occurring in the output image. Such a quantification identifies the human-understandable variation factors learned by GANs to compose scenes. The qualitative and quantitative results suggest that the generative representations learned by the GANs with layer-wise latent codes are specialized to synthesize different hierarchical semantics: the early layers tend to determine the spatial layout and configuration, the middle layers control the categorical objects, and the later layers finally render the scene attributes as well as color scheme. Identifying such a set of manipulatable latent variation factors facilitates semantic scene manipulation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset