Semantic Neural Decoding via Cross-Modal Generation

03/26/2023
by   Xuelin Qian, et al.
0

Semantic neural decoding aims to elucidate the cognitive processes of the human brain by reconstructing observed images from brain recordings. Although recent works have utilized deep generative models to generate images conditioned on fMRI signals, achieving high-quality generation with consistent semantics has proven to be a formidable challenge. To address this issue, we propose an end-to-end framework, SemanSig, which directly encodes fMRI signals and extracts semantic information. SemanSig leverages a deep generative model to decode the semantic information into high-quality images. To enhance the effectiveness of our framework, we use the ImageNet class prototype space as the internal representation space of fMRI signals, thereby reducing signal redundancy and learning difficulty. Consequently, this forms a semantic-rich and visually-friendly internal representation for generative models to decode. Notably, SemanSig does not require pre-training on a large fMRI dataset, and performs remarkably well when trained from scratch, even when the fMRI signal is limited. Our experimental results validate the effectiveness of SemanSig in achieving high-quality image generation with consistent semantics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset