Semantically Enhanced Hard Negatives for Cross-modal Information Retrieval
Visual Semantic Embedding (VSE) aims to extract the semantics of images and their descriptions, and embed them into the same latent space for cross-modal information retrieval. Most existing VSE networks are trained by adopting a hard negatives loss function which learns an objective margin between the similarity of relevant and irrelevant image-description embedding pairs. However, the objective margin in the hard negatives loss function is set as a fixed hyperparameter that ignores the semantic differences of the irrelevant image-description pairs. To address the challenge of measuring the optimal similarities between image-description pairs before obtaining the trained VSE networks, this paper presents a novel approach that comprises two main parts: (1) finds the underlying semantics of image descriptions; and (2) proposes a novel semantically enhanced hard negatives loss function, where the learning objective is dynamically determined based on the optimal similarity scores between irrelevant image-description pairs. Extensive experiments were carried out by integrating the proposed methods into five state-of-the-art VSE networks that were applied to three benchmark datasets for cross-modal information retrieval tasks. The results revealed that the proposed methods achieved the best performance and can also be adopted by existing and future VSE networks.
READ FULL TEXT