Semi-Automated Segmentation of Geoscientific Data Using Superpixels

03/20/2023
by   Conrad P. Koziol, et al.
0

Geological processes determine the distribution of resources such as critical minerals, water, and geothermal energy. However, direct observation of geology is often prevented by surface cover such as overburden or vegetation. In such cases, remote and in-situ surveys are frequently conducted to collect physical measurements of the earth indicative of the geology. Developing a geological segmentation based on these measurements is challenging since individual datasets can differ in properties (e.g. units, dynamic ranges, textures) and because the data does not uniquely constrain the geology. Further, as the number of datasets grows the information to constrain geology increases while simultaneously becoming harder to make sense of. Inspired by the concept of superpixels, we propose a deep-learning based approach to segment rasterized survey data into regions with similar characteristics. We demonstrate its use for semi-automated geoscientific mapping with datasets arising from independent sensors and with diverse properties. In addition, we introduce a new loss function for superpixels including a novel regularization parameter penalizing image segmentation with non-connected component superpixels. This improves integration of prior knowledge by allowing better control over the number of superpixels generated.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset