Semi-supervised Learning for Word Sense Disambiguation
This work is a study of the impact of multiple aspects in a classic unsupervised word sense disambiguation algorithm. We identify relevant factors in a decision rule algorithm, including the initial labeling of examples, the formalization of the rule confidence, and the criteria for accepting a decision rule. Some of these factors are only implicitly considered in the original literature. We then propose a lightly supervised version of the algorithm, and employ a pseudo-word-based strategy to evaluate the impact of these factors. The obtained performances are comparable with those of highly optimized formulations of the word sense disambiguation method.
READ FULL TEXT